当前看点!深入聊聊Golang中的sync.Cond

时间:2023-03-20 18:19:05       来源:转载

本文将介绍 Go 语言中的 sync.Cond 并发原语,包括 sync.Cond的基本使用方法、实现原理、使用注意事项以及常见的使用使用场景。能够更好地理解和应用 Cond 来实现 goroutine 之间的同步。

1. 基本使用

1.1 定义

sync.Cond是Go语言标准库中的一个类型,代表条件变量。条件变量是用于多个goroutine之间进行同步和互斥的一种机制。sync.Cond可以用于等待和通知goroutine,以便它们可以在特定条件下等待或继续执行。


(资料图片仅供参考)

1.2 方法说明

sync.Cond的定义如下,提供了Wait,Singal,Broadcast以及NewCond方法

type Cond struct {   noCopy noCopy   // L is held while observing or changing the condition   L Locker   notify  notifyList   checker copyChecker}func NewCond(l Locker) *Cond {}func (c *Cond) Wait() {}func (c *Cond) Signal() {}func (c *Cond) Broadcast() {}
登录后复制
NewCond方法: 提供创建Cond实例的方法Wait方法: 使当前线程进入阻塞状态,等待其他协程唤醒Singal方法: 唤醒一个等待该条件变量的线程,如果没有线程在等待,则该方法会立即返回。Broadcast方法: 唤醒所有等待该条件变量的线程,如果没有线程在等待,则该方法会立即返回。

1.3 使用方式

当使用sync.Cond时,通常需要以下几个步骤:

定义一个互斥锁,用于保护共享数据;创建一个sync.Cond对象,关联这个互斥锁;在需要等待条件变量的地方,获取这个互斥锁,并使用Wait方法等待条件变量被通知;在需要通知等待的协程时,使用SignalBroadcast方法通知等待的协程。最后,释放这个互斥锁。

1.4 使用例子

下面是一个使用sync.Cond的简单示例,实现了一个生产者-消费者模型:

var (    // 1. 定义一个互斥锁    mu    sync.Mutex    cond  *sync.Cond    count int)func init() {    // 2.将互斥锁和sync.Cond进行关联    cond = sync.NewCond(&mu)}func worker(id int) {    // 消费者    for {        // 3. 在需要等待的地方,获取互斥锁,调用Wait方法等待被通知        mu.Lock()        // 这里会不断循环判断 是否有待消费的任务        for count == 0 {            cond.Wait() // 等待任务        }        count--        fmt.Printf("worker %d: 处理了一个任务\n", id)        // 5. 最后释放锁        mu.Unlock()    }}func main() {    // 启动5个消费者    for i := 1; i <= 5; i++ {        go worker(i)    }    for {        // 生产者        time.Sleep(1 * time.Second)        mu.Lock()        count++        // 4. 在需要等待的地方,获取互斥锁,调用BroadCast/Singal方法进行通知        cond.Broadcast()         mu.Unlock()    }}
登录后复制

在这个示例中,创建一个生产者在生产任务,同时创建五个消费者来消费任务。当任务数为0时,此时消费者会调用Wait方法进入阻塞状态,等待生产者的通知。

当生产者产生任务后,使用Broadcast方法通知所有的消费者,唤醒处于阻塞状态的消费者,开始消费任务。这里使用sync.Cond实现多个协程之间的通信和同步。

1.5 为什么Sync.Cond 需要关联一个锁,然后调用Wait方法前需要先获取该锁

这里的原因在于调用Wait方法前如果不加锁,有可能会出现竞态条件。

这里假设多个协程都处于等待状态,然后一个协程调用了Broadcast唤醒了其中一个或多个协程,此时这些协程都会被唤醒。

如下,假设调用Wait方法前没有加锁的话,那么所有协程都会去调用condition方法去判断是否满足条件,然后都通过验证,执行后续操作。

for !condition() {    c.Wait()}c.L.Lock()// 满足条件情况下,执行的逻辑c.L.Unlock()
登录后复制

此时会出现的情况为,本来是需要在满足condition方法的前提下,才能执行的操作。现在有可能的效果,为前面一部分协程执行时,还是满足condition条件的;但是后面的协程,尽管不满足condition条件,还是执行了后续操作,可能导致程序出错。

正确的用法应该是,在调用Wait方法前便加锁,那么即使多个协程被唤醒,一次也只会有一个协程判断是否满足condition条件,然后执行后续操作。这样子就不会出现多个协程同时判断,导致不满足条件,也执行后续操作的情况出现。

c.L.Lock()for !condition() {    c.Wait()}// 满足条件情况下,执行的逻辑c.L.Unlock()
登录后复制

2.使用场景

2.1 基本说明

sync.Cond是为了协调多个协程之间对共享数据的访问而设计的。使用sync.Cond的场景通常都涉及到对共享数据的操作,如果没有共享数据的操作,那么没有太大必要使用sync.Cond来进行协调。当然,如果存在重复唤醒的场景,即使没有对共享数据的操作,也是可以使用sync.Cond来进行协调的。

通常情况下,使用sync.Cond的场景为:多个协程需要访问同一份共享数据,需要等待某个条件满足后才能访问或修改这份共享数据。

在这些场景下,使用sync.Cond可以方便地实现对共享数据的协调,避免了多个协程之间的竞争和冲突,保证了共享数据的正确性和一致性。因此,如果没有涉及到共享数据的操作,就没有必要使用sync.Cond来进行协调。

2.2 场景说明

2.2.1 同步和协调多个协程之间共享资源

下面举一个使用 sync.Cond的例子,用它来实现生产者-消费者模型。生产者往items放置元素,当items满了之后,便进入等待状态,等待消费者唤醒。消费者从items中取数据,当items空了之后,便进入等待状态,等待生产者唤醒。

这里多个协程对同一份数据进行操作,且需要基于该数据判断是否唤醒其他协程或进入阻塞状态,来实现多个协程的同步和协调。sync.Cond就适合在这种场景下使用,其正是为这种场景设计的。

package mainimport (        "fmt"        "sync"        "time")type Queue struct {        items []int        cap   int        lock  sync.Mutex        cond  *sync.Cond}func NewQueue(cap int) *Queue {        q := &Queue{            items: make([]int, 0),            cap:   cap,        }        q.cond = sync.NewCond(&q.lock)        return q}func (q *Queue) Put(item int) {        q.lock.Lock()        defer q.lock.Unlock()        for len(q.items) == q.cap {                q.cond.Wait()        }        q.items = append(q.items, item)        q.cond.Broadcast()}func (q *Queue) Get() int {        q.lock.Lock()        defer q.lock.Unlock()        for len(q.items) == 0 {            q.cond.Wait()        }        item := q.items[0]        q.items = q.items[1:]        q.cond.Broadcast()        return item}func main() {        q := NewQueue(10)        // Producer        go func() {            for {                q.Put(i)                fmt.Printf("Producer: Put %d\n", i)                time.Sleep(100 * time.Millisecond)            }        }()        // Consumer        go func() {            for {                    item := q.Get()                    fmt.Printf("Consumer: Get %d\n", item)                    time.Sleep(200 * time.Millisecond)            }        }()        wg.Wait()}
登录后复制

2.2.2 需要重复唤醒的场景中使用

在某些场景中,由于不满足某种条件,此时协程进入阻塞状态,等待条件满足后,由其他协程唤醒,再继续执行。在整个流程中,可能会多次进入阻塞状态,多次被唤醒的情况。

比如上面生产者和消费者模型的例子,生产者可能会产生一批任务,然后唤醒消费者,消费者消费完之后,会进入阻塞状态,等待下一批任务的到来。所以这个流程中,协程可能多次进入阻塞状态,然后再多次被唤醒。

sync.Cond能够实现即使协程多次进入阻塞状态,也能重复唤醒该协程。所以,当出现需要实现重复唤醒的场景时,使用sync.Cond也是非常合适的。

3. 原理

3.1 基本原理

Sync.Cond存在一个通知队列,保存了所有处于等待状态的协程。通知队列定义如下:

type notifyList struct {   wait   uint32   notify uint32   lock   uintptr // key field of the mutex   head   unsafe.Pointer   tail   unsafe.Pointer}
登录后复制

当调用Wait方法时,此时Wait方法会释放所持有的锁,然后将自己放到notifyList等待队列中等待。此时会将当前协程加入到等待队列的尾部,然后进入阻塞状态。

当调用Signal时,此时会唤醒等待队列中的第一个协程,其他继续等待。如果此时没有处于等待状态的协程,调用Signal不会有其他作用,直接返回。当调用BoradCast方法时,则会唤醒notfiyList中所有处于等待状态的协程。

sync.Cond的代码实现比较简单,协程的唤醒和阻塞已经由运行时包实现了,sync.Cond的实现直接调用了运行时包提供的API。

3.2 实现

3.2.1 Wait方法实现

Wait方法首先调用runtime_notifyListAd方法,将自己加入到等待队列中,然后释放锁,等待其他协程的唤醒。

func (c *Cond) Wait() {   // 将自己放到等待队列中   t := runtime_notifyListAdd(&c.notify)   // 释放锁   c.L.Unlock()   // 等待唤醒   runtime_notifyListWait(&c.notify, t)   // 重新获取锁   c.L.Lock()}
登录后复制

3.2.2 Singal方法实现

Singal方法调用runtime_notifyListNotifyOne唤醒等待队列中的一个协程。

func (c *Cond) Signal() {   // 唤醒等待队列中的一个协程   runtime_notifyListNotifyOne(&c.notify)}
登录后复制

3.2.3 Broadcast方法实现

Broadcast方法调用runtime_notifyListNotifyAll唤醒所有处于等待状态的协程。

func (c *Cond) Broadcast() {   // 唤醒等待队列中所有的协程   runtime_notifyListNotifyAll(&c.notify)}
登录后复制

4.使用注意事项

4.1 调用Wait方法前未加锁

在上面2.5已经说明了,调用Sync.Cond方法前需要加锁,否则有可能出现竞态条件。而且,现有的sync.Cond的实现,如果在调用Wait方法前未加锁,此时会直接panic,下面是一个简单例子的说明:

package mainimport (    "fmt"    "sync"    "time")var (   count int   cond  *sync.Cond   lk    sync.Mutex)func main() {    cond = sync.NewCond(&lk)    wg := sync.WaitGroup{}    wg.Add(2)    go func() {       defer wg.Done()       for {          time.Sleep(time.Second)          count++          cond.Broadcast()       }    }()        go func() {       defer wg.Done()       for {          time.Sleep(time.Millisecond * 500)                    //cond.L.Lock()           for count%10 != 0 {               cond.Wait()          }          t.Logf("count = %d", count)          //cond.L.Unlock()         }    }()    wg.Wait()}
登录后复制

上面代码中,协程一每隔1s,将count字段的值自增1,然后唤醒所有处于等待状态的协程。协程二执行的条件为count的值为10的倍数,此时满足执行条件,唤醒后将会继续往下执行。

但是这里在调用sync.Wait方法前,没有先获取锁,下面是其执行结果,会抛出 fatal error: sync: unlock of unlocked mutex 错误,结果如下:

count = 0fatal error: sync: unlock of unlocked mutex
登录后复制

因此,在调用Wait方法前,需要先获取到与sync.Cond关联的锁,否则会直接抛出异常。

4.2 Wait方法接收到通知后,未重新检查条件变量

调用sync.Wait方法,协程进入阻塞状态后被唤醒,没有重新检查条件变量,此时有可能仍然处于不满足条件变量的场景下。然后直接执行后续操作,有可能会导致程序出错。下面举一个简单的例子:

package mainimport (    "fmt"    "sync"    "time")var (   count int   cond  *sync.Cond   lk    sync.Mutex)func main() {    cond = sync.NewCond(&lk)    wg := sync.WaitGroup{}    wg.Add(3)    go func() {       defer wg.Done()       for {          time.Sleep(time.Second)          cond.L.Lock()          // 将flag 设置为true          flag = true          // 唤醒所有处于等待状态的协程          cond.Broadcast()          cond.L.Unlock()       }    }()        for i := 0; i < 2; i++ {       go func(i int) {          defer wg.Done()          for {             time.Sleep(time.Millisecond * 500)             cond.L.Lock()             // 不满足条件,此时进入等待状态             if !flag {                cond.Wait()             }             // 被唤醒后,此时可能仍然不满足条件             fmt.Printf("协程 %d flag = %t", i, flag)             flag = false             cond.L.Unlock()          }       }(i)    }    wg.Wait()}
登录后复制

在这个例子,我们启动了一个协程,定时将flag设置为true,相当于每隔一段时间,便满足执行条件,然后唤醒所有处于等待状态的协程。

然后又启动了两个协程,在满足条件的前提下,开始执行后续操作,但是这里协程被唤醒后,没有重新检查条件变量,具体看第39行。这里会出现的场景是,第一个协程被唤醒后,此时执行后续操作,然后将flag重新设置为false,此时已经不满足条件了。之后第二个协程唤醒后,获取到锁,没有重新检查此时是否满足执行条件,直接向下执行,这个就和我们预期不符,可能会导致程序出错,代码执行效果如下:

协程 1 flag = true协程 0 flag = false协程 1 flag = true协程 0 flag = false
登录后复制

可以看到,此时协程0执行时,flag的值均为false,说明此时其实并不符合执行条件,可能会导致程序出错。因此正确用法应该像下面这样子,被唤醒后,需要重新检查条件变量,满足条件之后才能继续向下执行。

c.L.Lock()// 唤醒后,重新检查条件变量是否满足条件for !condition() {    c.Wait()}// 满足条件情况下,执行的逻辑c.L.Unlock()
登录后复制

5.总结

本文介绍了 Go 语言中的 sync.Cond 并发原语,它是用于实现 goroutine 之间的同步的重要工具。我们首先学习了 sync.Cond的基本使用方法,包括创建和使用条件变量、使用WaitSignal/Broadcast方法等。

接着,我们对 sync.Cond的使用场景进行了说明,如同步和协调多个协程之间共享资源等。

在接下来的部分中,我们介绍了 sync.Cond的实现原理,主要是对等待队列的使用,从而sync.Cond有更好的理解,能够更好得使用它。同时,我们也讲述了使用sync.Cond的注意事项,如调用Wait方法前需要加锁等。

基于以上内容,本文完成了对 sync.Cond的介绍,希望能够帮助大家更好地理解和使用Go语言中的并发原语。

推荐学习:Golang教程

以上就是深入聊聊Golang中的sync.Cond的详细内容,更多请关注php中文网其它相关文章!

关键词: