天天快看:20个Redis经典面试题汇总及答案(分享)

时间:2023-03-07 19:15:15       来源:转载

本篇文章给大家整理了20道经典Redis面试题,希望对大家有帮助。

1. 什么是Redis?它主要用来什么的?

Redis,英文全称是Remote Dictionary Server(远程字典服务),是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。

与MySQL数据库不同的是,Redis的数据是存在内存中的。它的读写速度非常快,每秒可以处理超过10万次读写操作。因此redis被广泛应用于缓存,另外,Redis也经常用来做分布式锁。除此之外,Redis支持事务、持久化、LUA 脚本、LRU 驱动事件、多种集群方案。


(资料图片仅供参考)

2.说说Redis的基本数据结构类型

大多数小伙伴都知道,Redis有以下这五种基本类型:

String(字符串)Hash(哈希)List(列表)Set(集合)zset(有序集合)

它还有三种特殊的数据结构类型

GeospatialHyperloglogBitmap

2.1 Redis 的五种基本数据类型

String(字符串)

简介:String是Redis最基础的数据结构类型,它是二进制安全的,可以存储图片或者序列化的对象,值最大存储为512M简单使用举例: set key valueget key等应用场景:共享session、分布式锁,计数器、限流。内部编码有3种,int(8字节长整型)/embstr(小于等于39字节字符串)/raw(大于39个字节字符串)

C语言的字符串是char[]实现的,而Redis使用SDS(simple dynamic string)封装,sds源码如下:

struct sdshdr{  unsigned int len; // 标记buf的长度  unsigned int free; //标记buf中未使用的元素个数  char buf[]; // 存放元素的坑}
登录后复制

SDS 结构图如下:

Redis为什么选择SDS结构,而C语言原生的char[]不香吗?

Hash(哈希)

简介:在Redis中,哈希类型是指v(值)本身又是一个键值对(k-v)结构简单使用举例:hset key field valuehget key field内部编码:ziplist(压缩列表)hashtable(哈希表)应用场景:缓存用户信息等。注意点:如果开发使用hgetall,哈希元素比较多的话,可能导致Redis阻塞,可以使用hscan。而如果只是获取部分field,建议使用hmget。

字符串和哈希类型对比如下图:

List(列表)

简介:列表(list)类型是用来存储多个有序的字符串,一个列表最多可以存储2^32-1个元素。简单实用举例:lpush key value [value ...]lrange key start end内部编码:ziplist(压缩列表)、linkedlist(链表)应用场景:消息队列,文章列表,

一图看懂list类型的插入与弹出:

list应用场景参考以下:

Set(集合)

简介:集合(set)类型也是用来保存多个的字符串元素,但是不允许重复元素简单使用举例:sadd key element [element ...]smembers key内部编码:intset(整数集合)hashtable(哈希表)注意点:smembers和lrange、hgetall都属于比较重的命令,如果元素过多存在阻塞Redis的可能性,可以使用sscan来完成。应用场景:用户标签,生成随机数抽奖、社交需求。

有序集合(zset)

简介:已排序的字符串集合,同时元素不能重复简单格式举例:zadd key score member [score member ...]zrank key member底层内部编码:ziplist(压缩列表)skiplist(跳跃表)应用场景:排行榜,社交需求(如用户点赞)。

2.2 Redis 的三种特殊数据类型

Geo:Redis3.2推出的,地理位置定位,用于存储地理位置信息,并对存储的信息进行操作。HyperLogLog:用来做基数统计算法的数据结构,如统计网站的UV。Bitmaps :用一个比特位来映射某个元素的状态,在Redis中,它的底层是基于字符串类型实现的,可以把bitmaps成作一个以比特位为单位的数组

3. Redis为什么这么快?

Redis为什么这么快

3.1 基于内存存储实现

我们都知道内存读写是比在磁盘快很多的,Redis基于内存存储实现的数据库,相对于数据存在磁盘的MySQL数据库,省去磁盘I/O的消耗。

3.2 高效的数据结构

我们知道,Mysql索引为了提高效率,选择了B+树的数据结构。其实合理的数据结构,就是可以让你的应用/程序更快。先看下Redis的数据结构&内部编码图:

SDS简单动态字符串

字典

Redis 作为 K-V 型内存数据库,所有的键值就是用字典来存储。字典就是哈希表,比如HashMap,通过key就可以直接获取到对应的value。而哈希表的特性,在O(1)时间复杂度就可以获得对应的值。

跳跃表

3.3 合理的数据编码

Redis 支持多种数据数据类型,每种基本类型,可能对多种数据结构。什么时候,使用什么样数据结构,使用什么样编码,是redis设计者总结优化的结果。

3.4 合理的线程模型

I/O 多路复用

I/O 多路复用

什么是I/O多路复用?

单线程模型

Redis是单线程模型的,而单线程避免了CPU不必要的上下文切换和竞争锁的消耗。也正因为是单线程,如果某个命令执行过长(如hgetall命令),会造成阻塞。Redis是面向快速执行场景的数据库。,所以要慎用如smembers和lrange、hgetall等命令。Redis 6.0 引入了多线程提速,它的执行命令操作内存的仍然是个单线程。

3.5 虚拟内存机制

Redis直接自己构建了VM机制 ,不会像一般的系统会调用系统函数处理,会浪费一定的时间去移动和请求。

Redis的虚拟内存机制是啥呢?

4. 什么是缓存击穿、缓存穿透、缓存雪崩?

4.1 缓存穿透问题

先来看一个常见的缓存使用方式:读请求来了,先查下缓存,缓存有值命中,就直接返回;缓存没命中,就去查数据库,然后把数据库的值更新到缓存,再返回。

读取缓存

缓存穿透:指查询一个一定不存在的数据,由于缓存是不命中时需要从数据库查询,查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到数据库去查询,进而给数据库带来压力。

缓存穿透一般都是这几种情况产生的:

业务不合理的设计,比如大多数用户都没开守护,但是你的每个请求都去缓存,查询某个userid查询有没有守护。业务/运维/开发失误的操作,比如缓存和数据库的数据都被误删除了。黑客非法请求攻击,比如黑客故意捏造大量非法请求,以读取不存在的业务数据。

如何避免缓存穿透呢?一般有三种方法。

1.如果是非法请求,我们在API入口,对参数进行校验,过滤非法值。2.如果查询数据库为空,我们可以给缓存设置个空值,或者默认值。但是如有有写请求进来的话,需要更新缓存哈,以保证缓存一致性,同时,最后给缓存设置适当的过期时间。(业务上比较常用,简单有效)3.使用布隆过滤器快速判断数据是否存在。即一个查询请求过来时,先通过布隆过滤器判断值是否存在,存在才继续往下查。

4.2 缓存雪奔问题

缓存雪奔:指缓存中数据大批量到过期时间,而查询数据量巨大,请求都直接访问数据库,引起数据库压力过大甚至down机。

缓存雪奔一般是由于大量数据同时过期造成的,对于这个原因,可通过均匀设置过期时间解决,即让过期时间相对离散一点。如采用一个较大固定值+一个较小的随机值,5小时+0到1800秒酱紫。Redis 故障宕机也可能引起缓存雪奔。这就需要构造Redis高可用集群啦。

4.3 缓存击穿问题

缓存击穿:指热点key在某个时间点过期的时候,而恰好在这个时间点对这个Key有大量的并发请求过来,从而大量的请求打到db。

缓存击穿看着有点像,其实它两区别是,缓存雪奔是指数据库压力过大甚至down机,缓存击穿只是大量并发请求到了DB数据库层面。可以认为击穿是缓存雪奔的一个子集吧。有些文章认为它俩区别,是区别在于击穿针对某一热点key缓存,雪奔则是很多key。

解决方案就有两种:

1.使用互斥锁方案。缓存失效时,不是立即去加载db数据,而是先使用某些带成功返回的原子操作命令,如(Redis的setnx)去操作,成功的时候,再去加载db数据库数据和设置缓存。否则就去重试获取缓存。2. “永不过期”,是指没有设置过期时间,但是热点数据快要过期时,异步线程去更新和设置过期时间。

5. 什么是热Key问题,如何解决热key问题

什么是热Key呢?在Redis中,我们把访问频率高的key,称为热点key。

如果某一热点key的请求到服务器主机时,由于请求量特别大,可能会导致主机资源不足,甚至宕机,从而影响正常的服务。

而热点Key是怎么产生的呢?主要原因有两个:

那么在日常开发中,如何识别到热点key呢?

如何解决热key问题?

6. Redis 过期策略和内存淘汰策略

6.1 Redis的过期策略

我们在set key的时候,可以给它设置一个过期时间,比如expire key 60。指定这key60s后过期,60s后,redis是如何处理的嘛?我们先来介绍几种过期策略:

定时过期

惰性过期

定期过期

Redis中同时使用了惰性过期和定期过期两种过期策略。

假设Redis当前存放30万个key,并且都设置了过期时间,如果你每隔100ms就去检查这全部的key,CPU负载会特别高,最后可能会挂掉。因此,redis采取的是定期过期,每隔100ms就随机抽取一定数量的key来检查和删除的。但是呢,最后可能会有很多已经过期的key没被删除。这时候,redis采用惰性删除。在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间并且已经过期了,此时就会删除。

但是呀,如果定期删除漏掉了很多过期的key,然后也没走惰性删除。就会有很多过期key积在内存内存,直接会导致内存爆的。或者有些时候,业务量大起来了,redis的key被大量使用,内存直接不够了,运维小哥哥也忘记加大内存了。难道redis直接这样挂掉?不会的!Redis用8种内存淘汰策略保护自己~

6.2 Redis 内存淘汰策略

7.说说Redis的常用应用场景

缓存排行榜计数器应用共享Session分布式锁社交网络消息队列位操作

7.1 缓存

我们一提到redis,自然而然就想到缓存,国内外中大型的网站都离不开缓存。合理的利用缓存,比如缓存热点数据,不仅可以提升网站的访问速度,还可以降低数据库DB的压力。并且,Redis相比于memcached,还提供了丰富的数据结构,并且提供RDB和AOF等持久化机制,强的一批。

7.2 排行榜

当今互联网应用,有各种各样的排行榜,如电商网站的月度销量排行榜、社交APP的礼物排行榜、小程序的投票排行榜等等。Redis提供的zset数据类型能够实现这些复杂的排行榜。

比如,用户每天上传视频,获得点赞的排行榜可以这样设计:

1.用户Jay上传一个视频,获得6个赞,可以酱紫:
zadd user:ranking:2021-03-03 Jay 3
登录后复制
2.过了一段时间,再获得一个赞,可以这样:
zincrby user:ranking:2021-03-03 Jay 1
登录后复制
3.如果某个用户John作弊,需要删除该用户:
zrem user:ranking:2021-03-03 John
登录后复制
4.展示获取赞数最多的3个用户
zrevrangebyrank user:ranking:2021-03-03 0 2
登录后复制

7.3 计数器应用

各大网站、APP应用经常需要计数器的功能,如短视频的播放数、电商网站的浏览数。这些播放数、浏览数一般要求实时的,每一次播放和浏览都要做加1的操作,如果并发量很大对于传统关系型数据的性能是一种挑战。Redis天然支持计数功能而且计数的性能也非常好,可以说是计数器系统的重要选择。

7.4 共享Session

如果一个分布式Web服务将用户的Session信息保存在各自服务器,用户刷新一次可能就需要重新登录了,这样显然有问题。实际上,可以使用Redis将用户的Session进行集中管理,每次用户更新或者查询登录信息都直接从Redis中集中获取。

7.5 分布式锁

几乎每个互联网公司中都使用了分布式部署,分布式服务下,就会遇到对同一个资源的并发访问的技术难题,如秒杀、下单减库存等场景。

用synchronize或者reentrantlock本地锁肯定是不行的。如果是并发量不大话,使用数据库的悲观锁、乐观锁来实现没啥问题。但是在并发量高的场合中,利用数据库锁来控制资源的并发访问,会影响数据库的性能。实际上,可以用Redis的setnx来实现分布式的锁。

7.6 社交网络

赞/踩、粉丝、共同好友/喜好、推送、下拉刷新等是社交网站的必备功能,由于社交网站访问量通常比较大,而且传统的关系型数据不太适保存 这种类型的数据,Redis提供的数据结构可以相对比较容易地实现这些功能。

7.7 消息队列

消息队列是大型网站必用中间件,如ActiveMQ、RabbitMQ、Kafka等流行的消息队列中间件,主要用于业务解耦、流量削峰及异步处理实时性低的业务。Redis提供了发布/订阅及阻塞队列功能,能实现一个简单的消息队列系统。另外,这个不能和专业的消息中间件相比。

7.8 位操作

用于数据量上亿的场景下,例如几亿用户系统的签到,去重登录次数统计,某用户是否在线状态等等。腾讯10亿用户,要几个毫秒内查询到某个用户是否在线,能怎么做?千万别说给每个用户建立一个key,然后挨个记(你可以算一下需要的内存会很恐怖,而且这种类似的需求很多。这里要用到位操作——使用setbit、getbit、bitcount命令。原理是:redis内构建一个足够长的数组,每个数组元素只能是0和1两个值,然后这个数组的下标index用来表示用户id(必须是数字哈),那么很显然,这个几亿长的大数组就能通过下标和元素值(0和1)来构建一个记忆系统。

8. Redis 的持久化机制有哪些?优缺点说说

Redis是基于内存的非关系型K-V数据库,既然它是基于内存的,如果Redis服务器挂了,数据就会丢失。为了避免数据丢失了,Redis提供了持久化,即把数据保存到磁盘。

Redis提供了RDB和AOF两种持久化机制,它持久化文件加载流程如下:

8.1 RDB

RDB,就是把内存数据以快照的形式保存到磁盘上。

RDB持久化,是指在指定的时间间隔内,执行指定次数的写操作,将内存中的数据集快照写入磁盘中,它是Redis默认的持久化方式。执行完操作后,在指定目录下会生成一个dump.rdb文件,Redis 重启的时候,通过加载dump.rdb文件来恢复数据。RDB触发机制主要有以下几种:

RDB 的优点

适合大规模的数据恢复场景,如备份,全量复制等

RDB缺点

没办法做到实时持久化/秒级持久化。新老版本存在RDB格式兼容问题

AOF

AOF(append only file)持久化,采用日志的形式来记录每个写操作,追加到文件中,重启时再重新执行AOF文件中的命令来恢复数据。它主要解决数据持久化的实时性问题。默认是不开启的。

AOF的工作流程如下:

AOF的优点

数据的一致性和完整性更高

AOF的缺点

AOF记录的内容越多,文件越大,数据恢复变慢。

9.怎么实现Redis的高可用?

我们在项目中使用Redis,肯定不会是单点部署Redis服务的。因为,单点部署一旦宕机,就不可用了。为了实现高可用,通常的做法是,将数据库复制多个副本以部署在不同的服务器上,其中一台挂了也可以继续提供服务。Redis 实现高可用有三种部署模式:主从模式,哨兵模式,集群模式

9.1 主从模式

主从模式中,Redis部署了多台机器,有主节点,负责读写操作,有从节点,只负责读操作。从节点的数据来自主节点,实现原理就是主从复制机制

主从复制包括全量复制,增量复制两种。一般当slave第一次启动连接master,或者认为是第一次连接,就采用全量复制,全量复制流程如下:

1.slave发送sync命令到master。2.master接收到SYNC命令后,执行bgsave命令,生成RDB全量文件。3.master使用缓冲区,记录RDB快照生成期间的所有写命令。4.master执行完bgsave后,向所有slave发送RDB快照文件。5.slave收到RDB快照文件后,载入、解析收到的快照。6.master使用缓冲区,记录RDB同步期间生成的所有写的命令。7.master快照发送完毕后,开始向slave发送缓冲区中的写命令;8.salve接受命令请求,并执行来自master缓冲区的写命令

redis2.8版本之后,已经使用psync来替代sync,因为sync命令非常消耗系统资源,psync的效率更高。

slave与master全量同步之后,master上的数据,如果再次发生更新,就会触发增量复制

当master节点发生数据增减时,就会触发replicationFeedSalves()函数,接下来在 Master节点上调用的每一个命令会使用replicationFeedSlaves()来同步到Slave节点。执行此函数之前呢,master节点会判断用户执行的命令是否有数据更新,如果有数据更新的话,并且slave节点不为空,就会执行此函数。这个函数作用就是:把用户执行的命令发送到所有的slave节点,让slave节点执行。流程如下:

9.2 哨兵模式

主从模式中,一旦主节点由于故障不能提供服务,需要人工将从节点晋升为主节点,同时还要通知应用方更新主节点地址。显然,多数业务场景都不能接受这种故障处理方式。Redis从2.8开始正式提供了Redis Sentinel(哨兵)架构来解决这个问题。

哨兵模式,由一个或多个Sentinel实例组成的Sentinel系统,它可以监视所有的Redis主节点和从节点,并在被监视的主节点进入下线状态时,自动将下线主服务器属下的某个从节点升级为新的主节点。但是呢,一个哨兵进程对Redis节点进行监控,就可能会出现问题(单点问题),因此,可以使用多个哨兵来进行监控Redis节点,并且各个哨兵之间还会进行监控。

Sentinel哨兵模式

简单来说,哨兵模式就三个作用:

发送命令,等待Redis服务器(包括主服务器和从服务器)返回监控其运行状态;哨兵监测到主节点宕机,会自动将从节点切换成主节点,然后通过发布订阅模式通知其他的从节点,修改配置文件,让它们切换主机;哨兵之间还会相互监控,从而达到高可用。

故障切换的过程是怎样的呢

哨兵的工作模式如下:

每个Sentinel以每秒钟一次的频率向它所知的Master,Slave以及其他Sentinel实例发送一个 PING命令。

如果一个实例(instance)距离最后一次有效回复 PING 命令的时间超过 down-after-milliseconds 选项所指定的值, 则这个实例会被 Sentinel标记为主观下线。

如果一个Master被标记为主观下线,则正在监视这个Master的所有 Sentinel 要以每秒一次的频率确认Master的确进入了主观下线状态。

当有足够数量的 Sentinel(大于等于配置文件指定的值)在指定的时间范围内确认Master的确进入了主观下线状态, 则Master会被标记为客观下线。

在一般情况下, 每个 Sentinel 会以每10秒一次的频率向它已知的所有Master,Slave发送 INFO 命令。

当Master被 Sentinel 标记为客观下线时,Sentinel 向下线的 Master 的所有 Slave 发送 INFO 命令的频率会从 10 秒一次改为每秒一次

若没有足够数量的 Sentinel同意Master已经下线, Master的客观下线状态就会被移除;若Master 重新向 Sentinel 的 PING 命令返回有效回复, Master 的主观下线状态就会被移除。

9.3 Cluster集群模式

哨兵模式基于主从模式,实现读写分离,它还可以自动切换,系统可用性更高。但是它每个节点存储的数据是一样的,浪费内存,并且不好在线扩容。因此,Cluster集群应运而生,它在Redis3.0加入的,实现了Redis的分布式存储。对数据进行分片,也就是说每台Redis节点上存储不同的内容,来解决在线扩容的问题。并且,它也提供复制和故障转移的功能。

Cluster集群节点的通讯

一个Redis集群由多个节点组成,各个节点之间是怎么通信的呢?通过Gossip协议

Redis Cluster集群通过Gossip协议进行通信,节点之前不断交换信息,交换的信息内容包括节点出现故障、新节点加入、主从节点变更信息、slot信息等等。常用的Gossip消息分为4种,分别是:ping、pong、meet、fail。

特别的,每个节点是通过集群总线(cluster bus)与其他的节点进行通信的。通讯时,使用特殊的端口号,即对外服务端口号加10000。例如如果某个node的端口号是6379,那么它与其它nodes通信的端口号是 16379。nodes 之间的通信采用特殊的二进制协议。

Hash Slot插槽算法

既然是分布式存储,Cluster集群使用的分布式算法是一致性Hash嘛?并不是,而是Hash Slot插槽算法

插槽算法把整个数据库被分为16384个slot(槽),每个进入Redis的键值对,根据key进行散列,分配到这16384插槽中的一个。使用的哈希映射也比较简单,用CRC16算法计算出一个16 位的值,再对16384取模。数据库中的每个键都属于这16384个槽的其中一个,集群中的每个节点都可以处理这16384个槽。

集群中的每个节点负责一部分的hash槽,比如当前集群有A、B、C个节点,每个节点上的哈希槽数 =16384/3,那么就有:

节点A负责0~5460号哈希槽节点B负责5461~10922号哈希槽节点C负责10923~16383号哈希槽

Redis Cluster集群

Redis Cluster集群中,需要确保16384个槽对应的node都正常工作,如果某个node出现故障,它负责的slot也会失效,整个集群将不能工作。

因此为了保证高可用,Cluster集群引入了主从复制,一个主节点对应一个或者多个从节点。当其它主节点 ping 一个主节点 A 时,如果半数以上的主节点与 A 通信超时,那么认为主节点 A 宕机了。如果主节点宕机时,就会启用从节点。

在Redis的每一个节点上,都有两个玩意,一个是插槽(slot),它的取值范围是0~16383。另外一个是cluster,可以理解为一个集群管理的插件。当我们存取的key到达时,Redis 会根据CRC16算法得出一个16 bit的值,然后把结果对16384取模。酱紫每个key都会对应一个编号在 0~16383 之间的哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作。

虽然数据是分开存储在不同节点上的,但是对客户端来说,整个集群Cluster,被看做一个整体。客户端端连接任意一个node,看起来跟操作单实例的Redis一样。当客户端操作的key没有被分配到正确的node节点时,Redis会返回转向指令,最后指向正确的node,这就有点像浏览器页面的302 重定向跳转。

故障转移

Redis集群实现了高可用,当集群内节点出现故障时,通过故障转移,以保证集群正常对外提供服务。

redis集群通过ping/pong消息,实现故障发现。这个环境包括主观下线和客观下线

主观下线:某个节点认为另一个节点不可用,即下线状态,这个状态并不是最终的故障判定,只能代表一个节点的意见,可能存在误判情况。

主观下线

客观下线:指标记一个节点真正的下线,集群内多个节点都认为该节点不可用,从而达成共识的结果。如果是持有槽的主节点故障,需要为该节点进行故障转移。

假如节点A标记节点B为主观下线,一段时间后,节点A通过消息把节点B的状态发到其它节点,当节点C接受到消息并解析出消息体时,如果发现节点B的pfail状态时,会触发客观下线流程;当下线为主节点时,此时Redis Cluster集群为统计持有槽的主节点投票,看投票数是否达到一半,当下线报告统计数大于一半时,被标记为客观下线状态。

流程如下:

客观下线

故障恢复:故障发现后,如果下线节点的是主节点,则需要在它的从节点中选一个替换它,以保证集群的高可用。流程如下:

资格检查:检查从节点是否具备替换故障主节点的条件。准备选举时间:资格检查通过后,更新触发故障选举时间。发起选举:到了故障选举时间,进行选举。选举投票:只有持有槽的主节点才有票,从节点收集到足够的选票(大于一半),触发替换主节点操作

10. 使用过Redis分布式锁嘛?有哪些注意点呢?

分布式锁,是控制分布式系统不同进程共同访问共享资源的一种锁的实现。秒杀下单、抢红包等等业务场景,都需要用到分布式锁,我们项目中经常使用Redis作为分布式锁。

选了Redis分布式锁的几种实现方法,大家来讨论下,看有没有啥问题哈。

命令setnx + expire分开写setnx + value值是过期时间set的扩展命令(set ex px nx)set ex px nx + 校验唯一随机值,再删除

10.1 命令setnx + expire分开写

if(jedis.setnx(key,lock_value) == 1){ //加锁    expire(key,100); //设置过期时间    try {        do something  //业务请求    }catch(){  }  finally {       jedis.del(key); //释放锁    }}
登录后复制

如果执行完setnx加锁,正要执行expire设置过期时间时,进程crash掉或者要重启维护了,那这个锁就“长生不老”了,别的线程永远获取不到锁啦,所以分布式锁不能这么实现。

10.2 setnx + value值是过期时间

long expires = System.currentTimeMillis() + expireTime; //系统时间+设置的过期时间String expiresStr = String.valueOf(expires); // 如果当前锁不存在,返回加锁成功if (jedis.setnx(key, expiresStr) == 1) {        return true;} // 如果锁已经存在,获取锁的过期时间String currentValueStr = jedis.get(key); // 如果获取到的过期时间,小于系统当前时间,表示已经过期if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {      // 锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间(不了解redis的getSet命令的小伙伴,可以去官网看下哈)    String oldValueStr = jedis.getSet(key_resource_id, expiresStr);         if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {         // 考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才可以加锁         return true;    }}         //其他情况,均返回加锁失败return false;}
登录后复制

笔者看过有开发小伙伴是这么实现分布式锁的,但是这种方案也有这些缺点

过期时间是客户端自己生成的,分布式环境下,每个客户端的时间必须同步。没有保存持有者的唯一标识,可能被别的客户端释放/解锁。锁过期的时候,并发多个客户端同时请求过来,都执行了jedis.getSet(),最终只能有一个客户端加锁成功,但是该客户端锁的过期时间,可能被别的客户端覆盖。

10.3:set的扩展命令(set ex px nx)(注意可能存在的问题)

if(jedis.set(key, lock_value, "NX", "EX", 100s) == 1){ //加锁    try {        do something  //业务处理    }catch(){  }  finally {       jedis.del(key); //释放锁    }}
登录后复制

这个方案可能存在这样的问题:

锁过期释放了,业务还没执行完。锁被别的线程误删。

10.4 set ex px nx + 校验唯一随机值,再删除

if(jedis.set(key, uni_request_id, "NX", "EX", 100s) == 1){ //加锁    try {        do something  //业务处理    }catch(){  }  finally {       //判断是不是当前线程加的锁,是才释放       if (uni_request_id.equals(jedis.get(key))) {        jedis.del(key); //释放锁        }    }}
登录后复制

在这里,判断当前线程加的锁和释放锁是不是一个原子操作。如果调用jedis.del()释放锁的时候,可能这把锁已经不属于当前客户端,会解除他人加的锁

一般也是用lua脚本代替。lua脚本如下:

if redis.call("get",KEYS[1]) == ARGV[1] then    return redis.call("del",KEYS[1]) else   return 0end;
登录后复制

这种方式比较不错了,一般情况下,已经可以使用这种实现方式。但是存在锁过期释放了,业务还没执行完的问题(实际上,估算个业务处理的时间,一般没啥问题了)。

11. 使用过Redisson嘛?说说它的原理

分布式锁可能存在锁过期释放,业务没执行完的问题。有些小伙伴认为,稍微把锁过期时间设置长一些就可以啦。其实我们设想一下,是否可以给获得锁的线程,开启一个定时守护线程,每隔一段时间检查锁是否还存在,存在则对锁的过期时间延长,防止锁过期提前释放。

当前开源框架Redisson就解决了这个分布式锁问题。我们一起来看下Redisson底层原理是怎样的吧:

只要线程一加锁成功,就会启动一个watch dog看门狗,它是一个后台线程,会每隔10秒检查一下,如果线程1还持有锁,那么就会不断的延长锁key的生存时间。因此,Redisson就是使用Redisson解决了锁过期释放,业务没执行完问题。

12. 什么是Redlock算法

Redis一般都是集群部署的,假设数据在主从同步过程,主节点挂了,Redis分布式锁可能会有哪些问题呢?一起来看些这个流程图:

如果线程一在Redis的master节点上拿到了锁,但是加锁的key还没同步到slave节点。恰好这时,master节点发生故障,一个slave节点就会升级为master节点。线程二就可以获取同个key的锁啦,但线程一也已经拿到锁了,锁的安全性就没了。

为了解决这个问题,Redis作者 antirez提出一种高级的分布式锁算法:Redlock。Redlock核心思想是这样的:

我们假设当前有5个Redis master节点,在5台服务器上面运行这些Redis实例。

RedLock的实现步骤:如下

简化下步骤就是:

按顺序向5个master节点请求加锁根据设置的超时时间来判断,是不是要跳过该master节点。如果大于等于三个节点加锁成功,并且使用的时间小于锁的有效期,即可认定加锁成功啦。如果获取锁失败,解锁!

13. Redis的跳跃表

跳跃表

跳跃表是有序集合zset的底层实现之一跳跃表支持平均O(logN),最坏 O(N)复杂度的节点查找,还可以通过顺序性操作批量处理节点。跳跃表实现由zskiplist和zskiplistNode两个结构组成,其中zskiplist用于保存跳跃表信息(如表头节点、表尾节点、长度),而zskiplistNode则用于表示跳跃表节点。跳跃表就是在链表的基础上,增加多级索引提升查找效率。

14. MySQL与Redis 如何保证双写一致性

缓存延时双删删除缓存重试机制读取biglog异步删除缓存

14.1 延时双删?

什么是延时双删呢?流程图如下:

延时双删流程

先删除缓存再更新数据库休眠一会(比如1秒),再次删除缓存。

这个休眠一会,一般多久呢?都是1秒?

这种方案还算可以,只有休眠那一会(比如就那1秒),可能有脏数据,一般业务也会接受的。但是如果第二次删除缓存失败呢?缓存和数据库的数据还是可能不一致,对吧?给Key设置一个自然的expire过期时间,让它自动过期怎样?那业务要接受过期时间内,数据的不一致咯?还是有其他更佳方案呢?

14.2 删除缓存重试机制

因为延时双删可能会存在第二步的删除缓存失败,导致的数据不一致问题。可以使用这个方案优化:删除失败就多删除几次呀,保证删除缓存成功就可以了呀~ 所以可以引入删除缓存重试机制

删除缓存重试流程

写请求更新数据库缓存因为某些原因,删除失败把删除失败的key放到消息队列消费消息队列的消息,获取要删除的key重试删除缓存操作

14.3 读取biglog异步删除缓存

重试删除缓存机制还可以吧,就是会造成好多业务代码入侵。其实,还可以这样优化:通过数据库的binlog来异步淘汰key。

以mysql为例吧

可以使用阿里的canal将binlog日志采集发送到MQ队列里面然后通过ACK机制确认处理这条更新消息,删除缓存,保证数据缓存一致性

15. 为什么Redis 6.0 之后改多线程呢?

Redis6.0之前,Redis在处理客户端的请求时,包括读socket、解析、执行、写socket等都由一个顺序串行的主线程处理,这就是所谓的“单线程”。Redis6.0之前为什么一直不使用多线程?使用Redis时,几乎不存在CPU成为瓶颈的情况, Redis主要受限于内存和网络。例如在一个普通的Linux系统上,Redis通过使用pipelining每秒可以处理100万个请求,所以如果应用程序主要使用O(N)或O(log(N))的命令,它几乎不会占用太多CPU。

redis使用多线程并非是完全摒弃单线程,redis还是使用单线程模型来处理客户端的请求,只是使用多线程来处理数据的读写和协议解析,执行命令还是使用单线程。

这样做的目的是因为redis的性能瓶颈在于网络IO而非CPU,使用多线程能提升IO读写的效率,从而整体提高redis的性能。

16. 聊聊Redis 事务机制

Redis通过MULTI、EXEC、WATCH等一组命令集合,来实现事务机制。事务支持一次执行多个命令,一个事务中所有命令都会被序列化。在事务执行过程,会按照顺序串行化执行队列中的命令,其他客户端提交的命令请求不会插入到事务执行命令序列中。

简言之,Redis事务就是顺序性、一次性、排他性的执行一个队列中的一系列命令。

Redis执行事务的流程如下:

开始事务(MULTI)命令入队执行事务(EXEC)、撤销事务(DISCARD )

17. Redis的Hash 冲突怎么办

Redis 作为一个K-V的内存数据库,它使用用一张全局的哈希来保存所有的键值对。这张哈希表,有多个哈希桶组成,哈希桶中的entry元素保存了key和value指针,其中*key指向了实际的键,*value指向了实际的值。

哈希表查找速率很快的,有点类似于Java中的HashMap,它让我们在O(1) 的时间复杂度快速找到键值对。首先通过key计算哈希值,找到对应的哈希桶位置,然后定位到entry,在entry找到对应的数据。

什么是哈希冲突?

Redis为了解决哈希冲突,采用了链式哈希。链式哈希是指同一个哈希桶中,多个元素用一个链表来保存,它们之间依次用指针连接。

有些读者可能还会有疑问:哈希冲突链上的元素只能通过指针逐一查找再操作。当往哈希表插入数据很多,冲突也会越多,冲突链表就会越长,那查询效率就会降低了。

为了保持高效,Redis 会对哈希表做rehash操作,也就是增加哈希桶,减少冲突。为了rehash更高效,Redis还默认使用了两个全局哈希表,一个用于当前使用,称为主哈希表,一个用于扩容,称为备用哈希表

18. 在生成 RDB期间,Redis 可以同时处理写请求么?

可以的,Redis提供两个指令生成RDB,分别是save和bgsave

如果是save指令,会阻塞,因为是主线程执行的。如果是bgsave指令,是fork一个子进程来写入RDB文件的,快照持久化完全交给子进程来处理,父进程则可以继续处理客户端的请求。

19. Redis底层,使用的什么协议?

RESP,英文全称是Redis Serialization Protocol,它是专门为redis设计的一套序列化协议. 这个协议其实在redis的1.2版本时就已经出现了,但是到了redis2.0才最终成为redis通讯协议的标准。

RESP主要有实现简单、解析速度快、可读性好等优点。

20. 布隆过滤器

应对缓存穿透问题,我们可以使用布隆过滤器。布隆过滤器是什么呢?

布隆过滤器是一种占用空间很小的数据结构,它由一个很长的二进制向量和一组Hash映射函数组成,它用于检索一个元素是否在一个集合中,空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。

布隆过滤器原理是?假设我们有个集合A,A中有n个元素。利用k个哈希散列函数,将A中的每个元素映射到一个长度为a位的数组B中的不同位置上,这些位置上的二进制数均设置为1。如果待检查的元素,经过这k个哈希散列函数的映射后,发现其k个位置上的二进制数全部为1,这个元素很可能属于集合A,反之,一定不属于集合A

来看个简单例子吧,假设集合A有3个元素,分别为{d1,d2,d3}。有1个哈希函数,为Hash1。现在将A的每个元素映射到长度为16位数组B。

我们现在把d1映射过来,假设Hash1(d1)= 2,我们就把数组B中,下标为2的格子改成1,如下:

我们现在把d2也映射过来,假设Hash1(d2)= 5,我们把数组B中,下标为5的格子也改成1,如下:

接着我们把d3也映射过来,假设Hash1(d3)也等于 2,它也是把下标为2的格子标1:

因此,我们要确认一个元素dn是否在集合A里,我们只要算出Hash1(dn)得到的索引下标,只要是0,那就表示这个元素不在集合A,如果索引下标是1呢?那该元素可能是A中的某一个元素。因为你看,d1和d3得到的下标值,都可能是1,还可能是其他别的数映射的,布隆过滤器是存在这个缺点的:会存在hash碰撞导致的假阳性,判断存在误差。

如何减少这种误差呢?

搞多几个哈希函数映射,降低哈希碰撞的概率同时增加B数组的bit长度,可以增大hash函数生成的数据的范围,也可以降低哈希碰撞的概率

我们又增加一个Hash2哈希映射函数,假设Hash2(d1)=6,Hash2(d3)=8,它俩不就不冲突了嘛,如下:

即使存在误差,我们可以发现,布隆过滤器并没有存放完整的数据,它只是运用一系列哈希映射函数计算出位置,然后填充二进制向量。如果数量很大的话,布隆过滤器通过极少的错误率,换取了存储空间的极大节省,还是挺划算的。

目前布隆过滤器已经有相应实现的开源类库啦,如Google的Guava类库,Twitter的 Algebird 类库,信手拈来即可,或者基于Redis自带的Bitmaps自行实现设计也是可以的。

更多编程相关知识,请访问:编程视频!!

以上就是20个Redis经典面试题汇总及答案(分享)的详细内容,更多请关注php中文网其它相关文章!

关键词: